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Dynamics in Carom and Three Cushion Billiards 

I n h w a n  H a n *  

Department o f  Mechano-lnformatics & Design Engineering, Hongik University, 

Jochiwon, Choongnam 339-701, Korea 

This paper presents the analysis results of dynamics in the billiards game within the frame- 

work of rigid-body mechanics and a numerical simulation program. The friction exists between 

the ball and the table bed as well as between the ball and the rail. There are three parts in the 

dynamic behavior of the ball on the table bed ; motion of the ball on the table bed, collision 

between balls, and collision between the bali and the cushion. During the development of the 

simulation program, the dynamics problems such as rolling motion and three-dimensional 

frictional impact motion have been analyzed in detail. The theoretical issues are implemented 

into a viable graphic simulation program and its efficacy is demonstrated through the experi- 

mental validation of the billiards game. The resulting analysis results are verified quantitatively 

and qualitatively using high-speed video camera. Through the experimental tests, it was found 

that the physical parameters such as coefficients of restitution and friction vary according to the 

motion variables and corresponding empirical formulations were developed. The simulation and 

experimental results agree well. 
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1. I n t r o d u c t i o n  

Carom billiards is a form of billiards game 

played on a table without pockets and is domi- 

nant in much of Asia, United States and north- 

ern European countries. There are 2-4 players (or 

teams) and the object at each player's turn is to 

drive the cue ball (white) into both of other ob- 

ject balls (red). In three cushion billiards, the 

player must hit three or more cushions before 

hitting the second ball. The cue ball is struck with 

the cue tip, causing it to hit other balls and cush- 

ions. There are wooden surrounds of the rails 

around the table. Rails are the cushions that 

mark the field of play. Seven diamonds on the 

long sides of the table and three on the short 
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sides divide the rails of equal lengths (Cohen, 

2002). 

Many undergraduate physics and dynamics 

texts offer billiards dynamics as illustrative exam- 

ples of rolling and elastic collision mechanics. 

However, casual observation of such examples 

shows that billiard balls on real surfaces do not 

even approximately conform to the results expect- 

ed from the usual eIementary analysis (Wallace 

and Schroeder, 1988), The theory of billiards is 

based on rigid-body mechanics (Petit, 2004), and 

trajectories of bails are mainly influenced by 

friction and impact phenomena (Cheng et al., 

2004). The friction exists between the ball and 

table bed as well as between the ball and the rail. 

Usually, the ball rotates with sliding for a time 

due to the imparted impulses after the strike with 

the cue tip or the impact, and roils purely on the 

table. The ball is generally assumed to have three 

rotational and two linear velocity components. 

However, there are two types of impact phe- 

nomena except ball-cue tip stroke, ball-ball  and 
ball-rail impacts. As far as the author knows, the 
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ball-rai l  impacts have not been analyzed thor- 

oughly while there are extensive works for the 

collisions between balls (Wallace and Schrocder, 

1988; Onoda, 1989). The impact event has been 

considered as a 3-dimensional  problem which 

differs essentially in some points from the corre- 

sponding problems in two dimensions. This pa- 

per does not include the analysis results of the 

ball-cue tip stroke for which the empirical for- 

mulation has been performed. Many efforts are 

concentrated to analyze the frictional impact be- 

tween the ball and the rail while the ball-ball 

impact can be easily considered as the impact 

without friction. This paper presents analytical 

analysis results for the billiards mechanics in the 

framework of rigid-body dynamics (Jeong et al., 

2003). The theoretical issues are implemented 

into a viable graphic simulation program and its 

efficacy is demonstrated through the experiment- 

al validation of the billiards game. The resulting 

analysis results are verified quantitatively and 

qualitatively using high-speed video camera. 

2, Striking the Cue Ball 

It is difficult to model analytically and quanti- 

tatively the stroke process with the cue because 

of interposition of a human player. Therefore, the 

Radius 0.7R 

(a) Cue points 

. Z 

P y 

(b) Throw direction 

X 

(z-axis is directed outward from the table bed) 

Fig. 1 Cue points and the throw direction 

stroke must be modeled qualitatively and em- 

pirically for simulation purpose. There are 4 ele- 

ments that must be considered for striking the cue 

ball as follows (see Fig. 1). 

-Cuc points: struck point on the cue bail, 

divided into 9 different points (C, L, R, F, D, LF, 

LD, RF, RD) 

- Stoke force : amplitude of imparted force 

- Stroke method : 3 classified methods (normal 

shot, draw shot, follow shot) 

-Throw direction: direction of stroke (direc- 

tion of stroke force) 

3. Rolling Motion of Balls 
on the Table 

For the movement of a spherical ball over a 

fiat surface, three types of resistive force can be 

considered. There is a drag force due to the air, a 

resistive force due to the deformation of the sur- 

face and the ball in the contact zone, and eventu- 

ally a sliding force if the motion is not a pure 

rolling motion. The air drag force is much smaller 

than the rolling resistive force for billiards balls 

(Witters and Duymelinck, 1986). As shown in 

Fig. 2, the ball on the table has three rotation- 

al motion components (cox, CUr, cuz), two sliding 

motion components (vx, vr) ,  and frictional vari- 

ables (fx, ./r, Me). When the ball is struck with 

the cue tip or hit by other ball, the ball begins to 

rotate with sliding for a while. The sliding veloc- 

ity v~ at a contact point a is not zero. Then, the 

ball finally rolls purely due to friction force on 

Z / ,  

/ / 
/ . 

Fig. 2 A ball on the table bed 
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the table surface unless it hits other ball or rail. 

In other words, the sliding velocity Va at a con- 

tact point a decreases gradually until the ball hits 

others and becomes zero. The governing equa- 

tions of motion for the ball can be written as Eqs. 

(1)  - -  (3 ) .  

Ica'x=Rfv, 1ca'r---R/x ,  lw'z=-M~,]~z[ (1) 

mv'x=/x, mv'~=/r (2) 
v . x = v x - R ~ o v ,  v . r = v r + R w x  (3) 

w h e r e ,  

, 0  vz=Vz= , I =  mRZ[=Ixx=Ir r=I=]  

In the above equations, fx, f v  are frictional 

forces between the ball and the table surface, and 

the Ms is frictional moment• The isotropic Cou- 

lomb's frictional forces are shown in Eq. (4). 

/ , , = _ /  wx / , , = _ f  v.y 
,/'v~2 + v ~  " v/v~'2+ vor2 (4) 

/ = , /  fxx2 + f~ = p m g  ( p = / ~ = / z , )  

The friction moment Mt should be considered 

so that diminishing effect of side-spin motion 

can be modeled. The ball has a surface contact 

instead of a point contact with the table cloth. 

However, the contact is assumed as a point con- 

tact and the equivalent friction moment is intro- 

duced. Fig. 3 shows the contact area of radius p 

with the table surface cloth. The racliusis p mea- 

sured and found to have maximum value of 2 ram. 

The friction moment Mz can be expressed as 

shown in Eq. (5) under the assumption of uni- 

form distribution of the ball weight on the contact 

area. 

C o n t a c t  a rea  of  the  b a l l  on  the  surface of  

table bed 
Fig. 3 

P m 

_21zing fP z -  _ 2  
-Jo r a r - - ~ - l l m g  p (5) 

2 Mz ~ p m g  (--~- p ) [=constant] 

On the table, the ball can take two different 

phases of motion, rotating with sliding and pure 

rolling, respectively. First, the equations of mo- 

tion during the period of rotating w|th sliding are 

shown as Eq. (6). 

X~= Vx, Fc = vr 

r a g  

V . r  

~ x = _ 5  ug  v.r  (6) 
2 2 2 R ~/V~x+V~r 

• 5 f lax 
caY---T ~g R ./T.z a 

q Vax 4- Vat 

• 5 mM~ sgn (oJz) 

When the sliding veloeity at contact point a be- 

comes 0, the ball exhibits pure rolling motion and 

equation of motion can be expressed as Eq. (7). 

5 Mr  car 
Vx----- 

7 m R  ,/-~2 x + co} 

5 Mx COx 
7 m R  ¢ ~  

5 Mx cax (7) 
~bx= 7 m R  2 g-~2 x+o~v 

5 Mr oJr 
O . ) y ~ -  - - - -  

7 m R  ~ (o]x + o~r 

5 Mz COz 
~z= 7 m R  2 ¢'caz x+caz r 

In Eq. (7), Mx and Mr are rotational resistance 
moments during the pure rolling motion and 

should be estimated through simulation and ex- 

perimental tests. The moments are shown in Eq. 

( 8 ) .  
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Mx=Mr=MR, MR < 5--~ Ramg (8) 

As the motion of the system proceeds, the slid- 

ing velocity is monitored. When the velocity ap- 

proaches zero, the governing equation is changed 

to Eq. (7) for pure rolling phase from Eq. (6) for 

rotating with sliding. The information needed to 
predict the transition time is obtained by moni- 

toring previous values of the sliding velocity at 

discrete points in time. Then, a numerical root 

finding method is used to predict the transition 

time. 

4. The Impact Dynamic 

In a billiards game, there are two types of im- 

pacts, ba l l -ba l l  and bal l - ra i l  impact. The bal l -  

rail impact is treated as an elastic 3-diemension- 

al frictional impact while the bal l -bal l  impact 

is considered as a smooth impact without fric- 

tion. In order to simulate the system, the point of 

contact and time of impact between bodies must 

be determined. Under the assumption of a rigid 

body, the problem can be reduced geometrically 

to determining when one or more points on a 

body's boundary come into contact with a boun- 

dary of another body. In order  to predict the time 

of  impact, the relative normal distance and its 

time derivatives are used. The predicted time is 

used to estimate a time step such that the col- 

liding bodies will not be allowed to penetrate 

each other. Control of the simulation time step is 

continued until either the prediction rules are no 

longer true or the detection rule becomes satisfied 

(Han and Gilmore, 1993). 

Y 

b u 112 

b a l ~  

X 

Fig. 4 Impact between balls 

The coefficient of  restitution between balls e 

has been measured as 0.98 through preliminary 

experiments and the frictional effect between 
balls is negligibly small. For  the bal l -bal l  impact 

shown in Fig. 4, the principle of momentum con- 
servation is expressed as Eq. (9). 

ml vlx + m2 Vzx =mx V~x + m2 V~x 
(9) 

vlx + V2x= v{x + V~x 

Newton's hypothesis gives the kinematic rela- 

tionship shown in Eq. (10). 

e(Valx--Vazx) :(Va2x--V'alx) (10) 

Then, the velocity Vax at a contact point equals to 

the velocity Vx of the center of the billiard bali. 

From Eq. (9) and (10), the post-impact ve- 

locities of balls are obtained as Eq. (I1).  

, 1 - - e  , 1 + e  vlx - = ~  V l x - e ~  Vax 
( l l )  

, 1 +e , 1--e V2x ~ Vlx ± - - ~  Vzx 

Here, Vy, Wx, coy, coz don't  change after collision 

since there is no friction between balls. 

However, the actual physical process of bal l -  

rail impact is highly complex. In order to render 

the problem amenable to mathematical treatment 

some simplifying assumptions must be made. In 

rigid body mechanics impact is treated as instan- 

taneous. This research does not assume that im- 

pact is instantaneous, but that its duration is 

small compared to a typical time scale before or 

after the impact. Therefore, it is assumed that 

during the small time interval the positions and 

angular orientations of all bodies remain un- 

changed, since all velocities remain finite. An- 

other assumption is that the impact occurs at a 

point on each rigid body. In fact, all impact forces 

occur over a surface. This research deals only 

with point impacts. Fig. 5 shows the configura- 

tion of typical bal l - ra i l  impact. In Fig. 5, the 

distance (6=9.25 mm) between the contact point 

and the center of  ball is assumed to be constant. 

At any time during the small impact period, the 

motion of  the bodies is governed by linear and 

angular impulse-momentum laws, which provide 

the following Eq. (12) and (13). 
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Z y x 

Fig. 5 Impact between the ball and the cushion rail 

m ( v x -  Vxo) = Px,  rn ( v v -  vv0) = P r  
(12) 

m(vz - -Vzo)  = P z + N = O  or P z = - N  

1 ( f O x -  coxo) = - R P r  sin 0a 

I ( c o r - w r 0 )  = R P x  sin O a - R P z  cos 0a (13) 

I (co~-  ~o~o) = R P Y  cos & 

The relative velocities of sliding and compression 
of the points in contact are given by Eq. (14) 

Sx= -- V~x= vx sin ~a-- Vz cos & +Ra~r  

sy = - v o ~ = - v r - R w z  cos Oa+ R w x  sin & (14) 

c = - Vx cos Oa-  Vz sin & 

Using Eq. (12) and (13), Eq. (14) can be restat- 
ed as Eq. (15) in terms of impulse and momen- 
tum. 

s~= s~o-  A P x ,  s~= syo -  A ' Py 
(15) 

c = c o - B P ~  

where 

So=S(to), c0= c(t0) 

R 2 A = A , = !  4 _ 7 B =  ~ (16) 
m ! 2m m 

The three constants A,  A ' ,  B are independent 
of the initial velocities, but depend on the mass 
of  impacting bodies. For the ball to collide with 
the rail at a given point, the relative normal ve- 
locity Co must be positive. In Fig. 5, the 3-di- 
mensional frictional impact analysis is perform- 
ed for a contact point a and the post-impact 
velocity along the normal direction to the table 
surface v~r equals to zero because of normal reac- 
tion force at contact point b. 

There are two possible cases of  the 3-dimen- 
sional impact process for the ball-rail impact:  
one is sliding and sticking impact (CASE 1-1) 

and the other is forward sliding impact (CASE 
1-2) (see Han and Cho (1996) or Routh (1891) 
for more detail of  the 3-dimensional impact an- 
alysis, and consult with Han and Gilmore (1993) 
for general analysis of the frictional impact dy- 
namics). For both cases, the normal impulse 

through out the impact process is shown in Eq. 
(17). 

P z E = ( l  + e )  9 (17) 

The tangential impulses throughout the impact 
for both cases are calculated as follows. 

(CASE l - l )  Sliding and Sticking: Pzs<_Pzz 

Sx0 D Sy0 (18) 

(CASE 1-2) Forward Sliding: Pzs>P~E 

co P x ~ = ~ ( l  + e ) ~  cos & 

(19) 
Co P , ~ = ~ ( l  + e ) N - s i n  & 

where 

Isol 
G s -  A (20) 

For the sliding and sticking impact (CASE 1-1), 
the impulses along the fixed coordinate on the 
table surface can be obtained as Eq. (21), 

• s~0 (1 + e )  ~ - s i n  & P.~ = - - A -  sin & -  

p#, sy0 (21) 

Sxo 
P~ = ~  cos Oa-  ( l + e) s in0a  

and Eq. (22) holds for the forward sliding impact 
(CASE 1-21. 

P) = - / l ( l + e ) ~ c o s  & sin 0 a - ( l + e ) ~ c o s  0a 

P;, =#(1 + e ) ~  sin & (22) 

P; = # ( l + e ) ~ - c o s  &cos 0 a - ( l + e ) ~ - s i n  0a 

From Eq. (12) and (13), the post-impact ve- 
locities of the ball can be expressed as Eq. (23). 
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v,~ = vxo + - - ~ ,  v'~=v~+ P~m 

R O~x=O~xo-~- P~ sin 0. 
(23) 

R • zr=o~ro+T(Px s m  Oo-Pz cos 0~) 

R o~.=om+~-P~ cos Oo 

(CASE 1-2) Forward Sliding : 

V' ~- ' '1+ x=Z~-vxo(  e)c0s O~(/zcos O~sin O.+c~s 0~) 
t vv=t vo+/~(l+e) cas Oosin Oovx~ 

Substituting the expressions for impulses from 

Eq. (21) or (22) into Eq. (23), the post-impact 

velocities of the ball are obtained as Eq. (24) 

and (25). 

(CASE t - l )  Sliding and Sticking: 

F 2 sm" 2 0~] v& = v ~ -  vx0 L-7- 0~-4- ( 1 + e) co~ ~ 

2 Rto~  sin 0~ (24) 
7 

5 2 v~, = T  v ~ + Y  R [ ~o,~ sin 0~- w,o cos 0~] 

981 

(25) 

As shown in Eq. (24), v~, depends on side spin 

wxo while v~: heavily depends on the top spin 
o~r0 for the sliding and sticking impact. It is in- 

teresting that the post impact horizontal velocity 

v~, are independent of physical parameters such 

as coefficients of restitution and friction. On the 

other hand, the post-impact velocities for the for- 
ward sliding impact are independent of rotation- 

al velocities. 

5. Simulation and Experimental  
Tests 

All the issues discussed were implemented into 

a computer graphic simulation system. The ful- 

ly developed simulation system was tested with 

~r 

,,q, 

¢ 
P z e d ~ c t ~ o ~  m.ssd Zgu I~.m. a ~ D y  n d u ~ .  ~ w 

C h  m ~ g 9  T ~ r ~ a  ~q~ t p 

,[ 

D u ~ e ~ o n  a ~  

~ ~ a b m ~ m ~ D ~  a e  
Z~fa--Vm&~a~y 

F~, 6 Flow-chart of the developed simulation system 
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"Table 1 Measured physical parameters in the billiards 

Parameters Value Parameters Value 

Coeff. of friction between ball and 
Coeff. of restitution between balls 0.98 0.069 

table bed 

Coeff. of restitution between ball Coeff. of friction between ball and 
and rail 0.6--0.95 rail 0.1--0.35 

Frictional moment Mz 3.82E-4 (Nm) MR (=Mx=My) 3.8E-4 (Nm) 

many example trials of  bill iards game. The si- 

mulat ion system is composed of  fol lowing 8 mo- 

dules which has been developed whenever  each 

issue was addressed and answered. Fig. 6 illus- 

trates the basic structure o f  the s imulat ion sys- 

tem. 

- Striking the cue ball  : cue points, ampli tude of  

imparted stroke force, stroke method, throw di- 

rection 

- R o l l i n g  motion of  balls on the table surface 

(Eq. (6) and (7)) 

- Detect ion of  ba l l -ba l i  impact 

- Detect ion of  ba l l - ra i l  impact 

- A n a l y s i s  of  ba l l -ba l l  impac t :  3-dim. impact 

without  friction (Eq. (11)) 

- A n a l y s i s  of  ba l l - ra i l  impac t :  3-dim. impact 

with friction (Eq. (21) and (23) or Eq. (22) and 

(23)) 

- Cont ro l  o f  s imulat ion time step 

- Predict ion and detection of  time instant when 

the ball stops mot ion  

In Ca rom and three cushion billiards, the di- 

ameter of  the ball is 65.5 mm and the mass is 230 

g. The length of  long and short rails is 2540 mm 

and 1270 mm, respectively. In additions,  the mea- 

sured physical parameters through prel iminary 

experimental  tests are summarized in Table  1. 

The experimental  results indicated that the co- 

efficient o f  restitution varies according to the 

normal  velocity Vx0 (m/s)  of  the ball to the rail. 

The  empir ical  relat ionship between e and Vx0 is 

approximated by Eq. (26). 

e = 0 . 3 9  +0.257 Vx0-0.044 V~x0 (26) 

The test results indicated that the friction co- 

efficient between the ball  and rail /2 varies ac- 

cording to the incidence angle O(rad) .  However ,  

I 

• • 

t = 0 s e c  t = 0 sec 

¢_ 

t = 0.2125 ~c  

! 

q~,'q 

t = 0.2123 sec 

t = 0.5208 sec t = 0.4979 sec 

t = 0.5833 sec t = 0.5657 sec 

(a) Experimental (b) Simulation 

Fig. 7 Experimental and simulation results : 

one cushion play 

there seems to be no clear relat ionship be tween/2  

and Vxo. Eq. (27) shows the relat ionship between 

and /2 0. 

/2=0.471 --0.241 X 8 (27) 

The above two empirical  equat ions for estimating 
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t = 0 sec t = 0  sec 

t = 0.2626 sec t = 0.2623 sec 

t = 0.4083 sec 

! 
4 k  I 

i "J 

O • 

I 
t = 0.3852 sec 

t = 0.5083 sec t = 0.4692 sec 

I 
J 

""  i 

! = 0.75 sec t = 0.5661 sec 

(a) Experimental (b) Simulation 

Fig. g Experimental and simulation results : 

two cushion play 

coefficients of  res t i tu t ion  and  fr ict ion were de- 

r ived us ing  the least square  curve fi t t ing me thod  

with m a n y  exper imenta l  data.  

Exper iments  are presented for va l ida t ion  of  

the s imula t ion  a lgor i thms.  The  exper iments  in- 

c luded  one  cush ion  play, two cush ion  play and  

three cush ion  b i l l ia rds  game. The  m o t i o n  of  bal ls  

t = 0 s e c  t = 0 s e e  

t = 0 . 2  s e c  t = 0 . 1 8 6  s e c  

t = 0 . 3 8  s e c  t = 0 . 3 5 1  s e c  

t = 0.57 sec t = 0 . 5 1  s e c  

t = 1.57 see t = 1.293 sec 

t = 3.58 sec t = 3.125 sec 

(a) Experimental (b) Simulation 

Fig. 9 Experimental and simulation results: three 

cushion play 

was recorded using F A S T C A M - R a b b i t  h igh  

speed video camera ,  capab le  of  600 frames per  

second. The  recorded v ideo  was analyzed f l a m e -  

b y - f r a m e  and  compared  to the numer ica l  o u t p u t  

and  g raph ica l  ou tpu t  which  i l lustrates the si- 

mula ted  m o t i o n  of  balls,  thus  a l lowing  for vali-  

da t ion .  Figs. 7 and  8 show examples  of  one  cush-  

ion and  two cush ion  play, respectively. The  si- 

mu la t i on  results  agree well with  the exper imenta l  

result. However ,  the s l ight  differences in results  

might  come f rom the a s sumpt ion  of  r igid body  

for the de fo rmab le  rai l  and  uncer ta in t ies  of  phys-  

ical parameters .  Fig. 9 shows an example  of  three  

cush ion  play. As s h o w n  in Fig. 9, the experi-  

menta l  results agree fair ly wi th  the s imula t ion  

result  for the loca t ions  o f  col l i s ion poin ts  on  rails 

as well as ent i re  m o t i o n  of  balls. 
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6. Conclusions 

This paper presents the analysis of dynamics of 

billiards game in the framework of rigid body 

mechanics and the developed numerical simula- 

tion program. There are three parts in the dy- 

namic behavior;  motion of balls on the bed of 
table, impacts between balls, and impacts between 

the ball and the cushion rail. During the devel- 

opment of the simulation program, the dynamics 

problems such as rol l ing motion and three-di- 
mensional frictional impact, have been analyzed 

in detail. The problem of  determining the 3-di-  

mensional motion of any two rough bodies after 

a collision involves some rather long analysis and 
yet in some points it differs essentially from the 

corresponding problem in two dimensions. The 

analytical and numerical results were verified 
quantitatively and qualitatively through experi- 

mental tests using a high-speed video camera. 
Through the experimental tests, it was found that 

the physical parameters such as coefficients of 

restitution and friction vary according to the mo- 

tion variables and corresponding empirical for- 

mulations were developed. The simulation and 

experimental results agree well. 
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