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Dynamics in Carom and Three Cushion Billiards

Inhwan Han*
Department of Mechano-Informatics & Design Engineering, Hongik University,
Jochiwon, Choongnam 339-701, Korea

This paper presents the analysis results of dynamics in the billiards game within the frame-
work of rigid-body mechanics and a numerical simulation program. The friction exists between
the ball and the table bed as well as between the ball and the rail. There are three parts in the
dynamic behavior of the ball on the table bed ; motion of the ball on the table bed, collision
between balls, and collision between the ball and the cushion. During the development of the
simulation program, the dynamics problems such as rolling motion and three-dimensional
frictional impact motion have been analyzed in detail. The theoretical issues are implemented
into a viable graphic simulation program and its efficacy is demonstrated through the experi-
mental validation of the billiards game. The resulting analysis results are verified quantitatively
and qualitatively using high-speed video camera. Through the experimental tests, it was found
that the physical parameters such as coefficients of restitution and friction vary according to the
motion variables and corresponding empirical formulations were developed. The simulation and
experimental results agree well.
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sides divide the rails of equal lengths (Cohen,
2002).
Many undergraduate physics and dynamics

1. Introduction

Carom billiards is a form of billiards game
played on a table without pockets and is domi-
nant in much of Asia, United States and north-

texts offer billiards dynamics as illustrative exam-
ples of rolling and elastic collision mechanics.
However, casual observation of such examples
shows that billiard balls on real surfaces do not
even approximately conform to the resulis expect-

ern European countries. There are 2-4 players (or
teams) and the object at each player’s turn is to
drive the cue ball (white) into both of other ob-
ject balls (red). In three cushion billiards, the
player must hit three or more cushions before
hitting the second ball. The cue ball is struck with
the cue tip, causing it to hit other balls and cush-
ions. There are wooden surrounds of the rails
around the table. Rails are the cushions that
mark the field of play. Seven diamonds on the
long sides of the table and three on the short

ed from the usual elementary analysis (Wallace
and Schroeder, 1988). The theory of billiards is
based on rigid-body mechanics {Petit, 2004), and
trajectories of balls are mainly influenced by
friction and impact phenomena (Cheng et al,
2004). The friction exists between the ball and
table bed as well as between the ball and the rail.
Usually, the ball rotates with sliding for a time
due to the imparted impulses after the strike with
the cue tip or the impact, and rolls purely on the
* E-mail : ihhan @ hongik.ac.kr table. The ball is generally assumed to have three
TEL: +82-41-860-2581, FAX : +82-41-865-9321 rotational and two linear velocity components.
Dcpfinmcnt of. Mecht?nojnformatif:s & Design Engi- However, there are two types of impact phe-
neering, Hongik University, Jochiwon, Choongnam
339-701, Korea. (Manuscript Received November 15, nomena except ball-cue tip stroke, ball-ball and
2004; Revised February 21, 2005) ball-rail impacts. As far as the author knows, the
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ball-rail impacts have not been analyzed thor-
oughly while there are extensive works for the
collisions between balls (Wallace and Schroeder,
1988 ; Onoda, 1989). The impact event has been
considered as a 3-dimensional problem which
differs essentially in some points from the corre-
sponding problems in two dimensions. This pa-
per does not include the analysis results of the
ball-cue tip stroke for which the empirical for-
mulation has been performed. Many efforts are
concentrated to analyze the frictional impact be-
tween the ball and the rail while the ball-ball
impact can be easily considered as the impact
without friction. This paper presents analytical
analysis results for the billiards mechanics in the
framework of rigid-body dynamics (Jeong et al.,
2003). The theoretical issues are implemented
into a viable graphic simulation program and its
efficacy is demonstrated through the experiment-
al validation of the billiards game. The resulting
analysis results are verified quantitatively and
qualitatively using high-speed video camera.

2. Striking the Cue Ball

It is difficult to model analytically and quanti-
tatively the stroke process with the cue because
of interposition of a human player. Therefore, the

Radius 0.7R
OO,

(a) Cue points

(b) Throw direction
(2-axis is directed outward from the table bed)

Fig. 1 Cue points and the throw direction
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stroke must be modeled qualitatively and em-
pirically for simulation purpose. There are 4 ele-
ments that must be considered for striking the cue
ball as follows (see Fig. 1).

- Cue points: struck point on the cue ball,
divided into 9 different points {C,L, R, F, D, LF,
LD, RF, RD)

- Stoke force : amplitude of imparted force

- Stroke method : 3 classified methods (normal
shot, draw shot, follow shot)

- Throw direction : direction of stroke (direc-
tion of stroke force)

3. Rolling Motion of Balls
on the Table

For the movement of a spherical ball over a
flat surface, three types of resistive force can be
considered. There is a drag force due to the air, a
resistive force due to the deformation of the sur-
face and the ball in the contact zone, and eventu-
ally a sliding force if the motion is not a pure
rolling motion. The air drag force is much smaller
than the rofling resistive force for billiards balls
{Witters and Duymelinck, 1986). As shown in
Fig. 2, the ball on the table has three rotation-
al motion components (@x, @y, wz), two sliding
motion components (vx, vy), and frictional vari-
ables (fx, fy, Mz). When the ball is struck with
the cue tip or hit by other ball, the ball begins to
rotate with sliding for a while. The sliding veloc-
ity v, at a contact point a is not zero. Then, the
ball finally rolls purely due to friction force on

Fig. 2 A ball on the table bed
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the table surface unless it hits other ball or rail.
In other words, the sliding velocity vq at a con-
tact point a decreases gradually until the ball hits
others and becomes zero. The governing equa-
tions of motion for the ball can be written as Egs.

(n~(3).

Iwk=Rfy, I'y=—Rfx, lup= M,“‘”' (1)
Wz

mvx=fx, mvr=Ffy (2)
Yax=vx— Rwy, var=vr+ Ruwx (3
where,
Uz—-?)z——o I— mRz[ Ixx—IYY‘—IZz]

In the above equations, fx, fy are frictional
forces between the ball and the table surface, and
the M; is frictional moment. The isotropic Cou-
lomb’s frictional forces are shown in Eq. (4).

- —-v—ax— = _‘%_
S vaax2+vayz’ A e . (4)

=V =pmg (p=pa=)

The friction moment Mz should be considered
so that diminishing effect of side-spin motion
can be modeled. The ball has a surface contact
instead of a point contact with the table cloth.
However, the contact is assumed as a point con-
tact and the equivalent friction moment is intro-
duced. Fig. 3 shows the contact area of radius p
with the table surface cloth. The radiusis o mea-
sured and found to have maximum value of 2 mm.
The friction moment Mz can be expressed as
shown in Eq. (5) under the assumption of uni-
form distribution of the ball weight on the contact
area.

Fig. 3 Contact area of the ball on the surface of
table bed
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o= ul

_Z#mg 2y _2
== _/o‘rdr 3 H4mME O (5)

>g(27rrdr) r

Mz=pumg (%_ p) [=constant]

On the table, the ball can take two different
phases of motion, rotating with sliding and pure
rolling, respectively. First, the equations of mo-
tion during the period of rotating with sliding are
shown as Eq. (6).

X(;:Ux, Yc=11y
Vax
Ux=—pg = (————
* vix+viy
. Var
Uy= —pg—F———
\/Uix"}'vzy
S HE Ve ®
2 R V0§x+vzy
p= HE  Vex
2 R g+
. _5 M
a)z-—2 mR? sen(wz)

When the sliding velocity at contact point a be-
comes 0, the ball exhibits pure rolling motion and
equation of motion can be expressed as Eq. (7).

Xc=1)x, YG=UY

bx _ 5 My Wy

T mR SR T
zs]yz_j_ MX Wx

7 mR JE T %
® __ 5 My wx )
= __Wx

7 mR? Yok +ob
@,=_iﬂ’__“_‘_l’_

T mR S+
.5 M Wz
Wz= "~ g

T mR* Skt
In Eq. (7), Mx and My are rotational resistance
moments during the pure rolling motion and

should be estimated through simulation and ex-
perimental tests. The moments are shown in Eq.

(8).
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Mx=My=Mx, MRS%R#mg (8)
As the motion of the system proceeds, the slid-
ing velocity is monitored. When the velocity ap-
proaches zero, the governing equation is changed
to Eq. (7) for pure rolling phase from Eq. (6) for
rotating with sliding. The information needed to
predict the transition time is obtained by moni-
toring previous values of the sliding velocity at
discrete points in time. Then, a numerical root
finding method is used to predict the transition
time.

4. The Impact Dynamic

In a billiards game, there are two types of im-
pacts, ball-ball and ball-rail impact. The ball-
rail impact is treated as an elastic 3-diemension-
al frictional impact while the ball-ball impact
is considered as a smooth impact without fric-
tion. In order to simulate the system, the point of
contact and time of impact between bodies must
be determined. Under the assumption of a rigid
body, the problem can be reduced geometrically
to determining when one or more points on a
body’s boundary come into contact with a boun-
dary of another body. In order to predict the time
of impact, the relative normal distance and its
time derivatives are used. The predicted time is
used to estimate a time step such that the col-
liding bodies will not be allowed to penetrate
each other. Control of the simulation time step is
continued until either the prediction rules are no
longer true or the detection rule becomes satisfied
(Han and Gilmore, 1993).

bull2

balll

Fig. 4 Impact between balls
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The coefficient of restitution between balls e
has been measured as 0.98 through preliminary
experiments and the frictional effect between
balls is negligibly small. For the ball-ball impact
shown in Fig. 4, the principle of momentum con-
servation is expressed as Eq. (9).

WV T M2 V2x™ M Ulx + M2 Uiy (9)
Vixt Vex=vix+ t2x
Newton’s hypothesis gives the kinematic rela-
tionship shown in Eq. (10).

e (Ualx_ Ua2x) = (UzIIZx - Uc,zlx) ( 10)

Then, the velocity vax at a contact point equals to

the velocity vy of the center of the billiard ball.
From Eq. (9) and (10), the post-impact ve-

locities of balls are obtained as Eq. (11).

, I— 1+
Vix =T€ le""z—e V2x
14+ 1 ()
Uéx:_zg le+—2_e Vax

Here, vy, wx, Wy, @w: don’t change after collision
since there is no friction between balls.

However, the actual physical process of ball-
rail impact is highly complex. In order to render
the problem amenable to mathematical treatment
some simplifying assumptions must be made. In
rigid body mechanics impact is treated as instan-
taneous. This research does not assume that im-
pact is instantaneous, but that its duration is
small compared to a typical time scale before or
after the impact. Therefore, it is assumed that
during the small time interval the positions and
angular orientations of all bodies remain un-
changed, since all velocities remain finite. An-
other assumption is that the impact occurs at a
point on each rigid body. In fact, all impact forces
occur over a surface. This research deals only
with point impacts. Fig. 5 shows the configura-
tion of typical ball-rail impact. In Fig. 5, the
distance (£=9.25 mm) between the contact point
and the center of ball is assumed to be constant.
At any time during the small impact period, the
motion of the bodies is governed by linear and
angular impulse-momentum laws, which provide
the following Eq. (12) and (13).
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bodyl

Fig. 5 Impact between the ball and the cushion rail

m(vx— vxo) = Px, m(vy—vyo) =Py
m(vz—vw) =P:+N=0or P,=—N
I{wx—wxo) =—RPysin 6,
I{wy—wy) =RPxsin 6a—RP;cos 6, (13)
I{wz— wzn) =RPy cos .

The relative velocities of sliding and compression

(12)

of the points in contact are given by Eq. (14)
$x=—Uax=Ux Sin Go— vz cos G+ Rwy
Sy= —Uay= —Vy— Rwz cos 6,+ Rwx sin 6, (14)
¢=—0x €08 Ba—vzsin b

Using Eq. (12) and (13), Eq. (14) can be restat-
ed as Eq. (15) in terms of impulse and momen-

tum.
Sx=8x0—APx, sy=50—A'Py
(15)
C=CO_BPZ
where
so=s{f), co=c(t)
2 (16)
Aea— Ly R_ T o1
m I 2m m

The three constants A, A’, B are independent
of the initial velocities, but depend on the mass
of impacting bodies. For the ball to collide with
the rail at a given point, the relative normal ve-
locity c¢o must be positive. In Fig. 5, the 3-di-
mensional frictional impact analysis is perform-
ed for a contact point a and the post-impact
velocity along the normal direction to the table
surface vz equals to zero because of normal reac-
tion force at contact point b.

There are two possible cases of the 3-dimen-
sional impact process for the ball-rail impact:
one is sliding and sticking impact (CASE 1-1)

and the other is forward sliding impact (CASE
1-2) (see Han and Cho (1996) or Routh (1891)
for more detail of the 3-dimensional impact an-
alysis, and consult with Han and Gilmore (1993)
for general analysis of the frictional impact dy-
namics). For both cases, the normal impulse
through out the impact process is shown in Eq.
(17).

sz=<1+e)% (17)

The tangential impulses throughout the impact
for both cases are calculated as follows.

(CASE 1-1) Sliding and Sticking : Pps< Py

Pa="3 Pe="% (18)

(CASE 1-2) Forward Sliding : Pos> Pz

sz=#(1+e)%’-cos 6

(19)
Pyg=p(1+e)—%°—sin00

where

_ | 5ol
Pes= A (20)

For the sliding and sticking impact (CASE 1-1),
the impulses along the fixed coordinate on the

table surface can be obtained as Eq. (21),

P)’(Z_S_mSin 6a_(1+e)%5in 6«1

A
Py = (21)
A
F; =37"° oS Ga— (1+e)%sin Oa

and Eq. (22) holds for the forward sliding impact
(CASE 1-2).

Pi=—p(1+€)F cos hsin b~ (14¢) 5 cos o
Py=pu(l +e)%sin & (22)
a ey

Pr=pllte) B 08 6 cos ,— (1+e) B sin 6,

From Eq. (12) and (13), the post-impact ve-
locities of the ball can be expressed as Eq. (23).
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Py Py
, Vy=vnt-
m* T

Vx=Uxot

wx:wxu—§PY sin @,
R (23)
wYZWW+T(Px sin Ha“‘PZ Ccos Ha)

(uz=a)zu+—§;Py cos f,

Substituting the expressions for impulses from
Eq. (21) or (22} into Eq. {23), the post-impact
velocities of the ball are obtained as Eq. (24)

(CASE 1-2) Forward Sliding :

vk =tn—vn(l+e)cos 6;(¢cos hsin fa+cos &) (25)

vy=vw+u(l+e)cos f;sin Gn

As shown in Eq. (24), v¥ depends on side spin
wxo while vx heavily depends on the top spin
wyo for the sliding and sticking impact. It is in-
teresting that the post impact horizontal velocity
vy are independent of physical parameters such
as coefficients of restitution and friction. On the
other hand, the post-impact velocities for the for-

and (25). ward sliding impact are independent of rotation-

al velocities.
(CASE 1-1) Sliding and Sticking:

5. Simulation and Experimental

Tests

V= m—m[%sinz f.+ (1+e) cos? 6,,]

2 .
_TR(”YO sin fa (24) All the issues discussed were implemented into

, . a computer graphic simulation system. The ful-
Vy =i L'yn+% R[a)xn sin G.— Wz COS aa]

7 ly developed simulation system was tested with

Pradicvion and
Datseation of
Collisionw

Calsualee
Initial Velocivy
& Aacelexation
of Cue ball

el

| Change Timastsp

Invegratve
Pemiwion .,
Veloaiby R Acal.
of Balls

I Yom
Prediction and

Detecricon of
Collimions

¥

FPraedigtion and
Deteavion aof
Daro-Veloaivy

Impacy Dynamicw

Frediavion and

*, Debaation of
Zero-Valocaicy
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of Balls
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Velocioy? { Change Timastay

Val. of Every
Ball = Zarxo

RETURN

Fig. 6 Flow-chart of the developed simulation system
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“Table 1 Measured physical parameters in the billiards

Parameters Value

Parameters Value

Coeff. of restitution between balls 0.98

Coeff. of friction between ball and

table bed 0.069

Coeft. of restitution between ball

0.6~0.95
and rail 6~09

Coeff. of friction between ball and

. 0.1~0.35
rail

Frictional moment M, 3.82E-4 (Nm)

My (=M.=M,) 3.8E-4 (Nm)

many example trials of billiards game. The si-
mulation system is composed of following 8 mo-
dules which has been developed whenever each
issue was addressed and answered. Fig. 6 illus-
trates the basic structure of the simulation sys-
tem.

- Striking the cue ball : cue points, amplitude of
imparted stroke force, stroke method, throw di-
rection

- Rolling motion of balls on the table surface
(Eq. (6) and (7))

- Detection of ball-ball impact

- Detection of ball-rail impact

- Analysis of ball-ball impact: 3-dim. impact
without friction (Eq. (11))

- Analysis of ball-rail impact: 3-dim. impact
with friction (Eq. (21) and (23) or Eq. (22) and
(23))

- Control of simulation time step

- Prediction and detection of time instant when
the ball stops motion

In Carom and three cushion billiards, the di-
ameter of the ball is 65.5 mm and the mass is 230
g. The length of long and short rails is 2540 mm
and 1270 mm, respectively. In additions, the mea-
sured physical parameters through preliminary
experimental tests are summarized in Table 1.

The experimental results indicated that the co-
efficient of restitution varies according to the
normal velocity Vi (m/s) of the ball to the rail.
The empirical relationship between ¢ and Vi is
approximated by Eq. (26).

e=0.39+0.257 Vyy—0.044 V3, (26)

The test results indicated that the friction co-
efficient between the ball and rail u varies ac-
cording to the incidence angle #{rad). However,

Copyright (C) 2005 NuriMedia Co., Ltd.

t=10sec

t=0.2123 sec

= = . e —

t =0.5833 sec

1 = 0.5657 sec
tal Experimental (b} Simulation
Fig. 7 Experimental and simulation results :

one cushion play

there seems to be no clear relationship between p
and Vxo. Eq. (27) shows the relationship between

and ¢ 6.
©=0.471—0.241 X 4 (27)

The above two empirical equations for estimating
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t=0.2626 sec 1=0.2623 sec

1=10.4083 sec 1=0.3852 sec

t = ().5083 sec t=0.4692 sec

1 =0.566] sec

t=0.75 sec

{a) Experimental (b) Simulation
Fig. 8 Experimental and simulation results :

two cushion play

coefficients of restitution and friction were de-
rived using the least square curve fitting method
with many experimental data.

Experiments are presented for validation of
the simulation algorithms. The experiments in-
cluded one cushion play, two cushion play and
three cushion billiards game. The motion of balls
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v
-
t =0 sec t=0sec
» 4
1=0.2 sec t=0.186 sec
-
«
1= .38 sec t=10.351 sec
- L4
t=0.57 sec t=10.51 sec
»
-
1= 1.57 sec t=1.293 sec
-
r
t=3.58 sec t=3.125 sec

(b) Simulation

(a) Experimental

Fig. 9 Experimental and simulation results: three
cushion play

was recorded using FASTCAM-Rabbit high
speed video camera, capable of 600 frames per
second. The recorded video was analyzed frame-
by-frame and compared to the numerical output
and graphical output which illustrates the si-
mulated motion of balls, thus allowing for vali-
dation. Figs. 7 and 8 show examples of one cush-
ton and two cushion play, respectively. The si-
mulation results agree well with the experimental
result. However, the slight differences in results
might come from the assumption of rigid body
for the deformable rail and uncertainties of phys-
ical parameters. Fig. 9 shows an example of three
cushion play. As shown in Fig. 9, the experi-
mental results agree fairly with the simulation
result for the locations of collision points on rails
as well as entire motion of balls.



6. Conclusions

This paper presents the analysis of dynamics of
billiards game in the framework of rigid body
mechanics and the developed numerical simula-
tion program. There are three parts in the dy-
namic behavior ; motion of balls on the bed of
table, impacts between balls, and impacts between
the ball and the cushion rail. During the devel-
opment of the simulation program, the dynamics
problems such as rolling motion and three-di-
mensional frictional impact, bave been analyzed
in detail. The problem of determining the 3-di-
mensional motion of any two rough bodies after
a colliston involves some rather long analysis and
yet in some points it differs essentially from the
corresponding problem in two dimensions. The
analytical and numerical results were verified
quantitatively and qualitatively through experi-
mental tests using a high-speed video camera.
Through the experimental tests, it was found that
the physical parameters such as coefficients of
restitution and friction vary according to the mo-
tion variables and corresponding empirical for-
mulations were developed. The simulation and
experimental results agree well.
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